.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_predict_experiment_plot_predict_experiment.py: ================================================================= Experimental Prediction using a Binding-type and GCN NN Ensembles ================================================================= This example shows how to predict binding-type and GCN histograms from pdfs .. code-block:: default from __future__ import division import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np from jl_spectra_2_structure import HREEL_2_scaledIR from jl_spectra_2_structure.plotting_tools import set_figure_settings from jl_spectra_2_structure.cross_validation import LOAD_CROSS_VALIDATION from jl_spectra_2_structure import get_exp_data_path set figure settings ------------------- .. code-block:: default set_figure_settings('paper') Load cross validation runs and generate neural network ensembles ---------------------------------------------------------------- .. code-block:: default BINDING_TYPE_PATH = 'C:/Users/lansf/Documents/Data/IR_Materials_Gap/cv_BW/CO_BINDING_TYPE_HIGH' GCN_PATH = 'C:/Users/lansf/Documents/Data/IR_Materials_Gap/cv_BW/CO_GCN_HIGH' Downloads = r'C:\Users\lansf\Downloads' CV_class = LOAD_CROSS_VALIDATION(cross_validation_path=BINDING_TYPE_PATH) CV_class.load_CV_class(0) NN_CNCO = CV_class.get_NN_ensemble(np.arange(len(CV_class.CV_FILES)).tolist(),use_all_cv_NN=True) CV_class_GCN = LOAD_CROSS_VALIDATION(cross_validation_path=GCN_PATH) NN_GCN = CV_class_GCN.get_NN_ensemble(np.arange(len(CV_class_GCN.CV_FILES)).tolist(), use_all_cv_NN=True) Load experimental spectra and generate predictions with 95% prediction range ---------------------------------------------------------------------------- .. code-block:: default X = np.linspace(CV_class.LOW_FREQUENCY,CV_class.HIGH_FREQUENCY,num=CV_class.ENERGY_POINTS,endpoint=True) EXP_FILES = np.array(get_exp_data_path())[[3,1,0,2]] IR_DATA = np.zeros((len(EXP_FILES),X.shape[0])) for count, file in enumerate(EXP_FILES): IR_DATA[count] = HREEL_2_scaledIR(np.loadtxt(file, delimiter=',', usecols=(0, 1)).T, PEAK_CONV = 2.7, frequency_range=X) Surfaces = ['c4x2Pt111', 'LowCovPt111', 'p1x2Pt110','Ptnano'] NUM_SURFACES = len(Surfaces) NUM_PREDICTIONS = len(NN_CNCO.NN_LIST) CNCO_prediction = NN_CNCO.predict(IR_DATA,create_predictions_list=True) GCN_prediction = NN_GCN.predict(IR_DATA,create_predictions_list=True) CNCO_sorted = [np.sort(np.array(NN_CNCO.PREDICTIONS_LIST)[:,i,:],axis=0) for i in range(NUM_SURFACES)] GCN_sorted = [np.sort(np.array(NN_GCN.PREDICTIONS_LIST)[:,i,:],axis=0) for i in range(NUM_SURFACES)] CNCO_95U = [CNCO_sorted[i][int(0.95*NUM_PREDICTIONS)] - CNCO_prediction[i] for i in range(NUM_SURFACES)] CNCO_95L = [CNCO_prediction[i]- CNCO_sorted[i][int(0.05*NUM_PREDICTIONS)] for i in range(NUM_SURFACES)] GCN_95U = [GCN_sorted[i][int(0.95*NUM_PREDICTIONS)] - GCN_prediction[i] for i in range(NUM_SURFACES)] GCN_95L = [GCN_prediction[i]- GCN_sorted[i][int(0.05*NUM_PREDICTIONS)] for i in range(NUM_SURFACES)] Plot spectra and predictions with 95% prediction range ------------------------------------------------------ .. code-block:: default linestyle = ['-',':','-.','--'] color = ['g','b', 'orange','darkorchid'] G = gridspec.GridSpec(2, 2) x_offset = [-0.3,-0.1,0.1,0.3] hatch = ['/','\\','-',None] G.update(wspace=0.0,hspace=.6) plt.figure(0,figsize=(7.2,4)) ax3 = plt.subplot(G[0,:]) for i in range(NUM_SURFACES): plt.plot(X,IR_DATA[i],color[i],linestyle=linestyle[i]) plt.legend(['Pt(111) c(4x2)','Pt(111) 0.17 ML CO', 'Pt(110)','55 nm Au@0.7 nm Pt/Pt']) plt.xlabel('Frequency [cm$^{-1}$]') plt.ylabel('Relative Intensity') ax3.text(0.002,0.93,'(a)', transform=ax3.transAxes) ax1 = plt.subplot(G[1,0]) x = np.arange(1,CNCO_prediction[0].size+1) for i in range(NUM_SURFACES): ax1.bar(x+x_offset[i], CNCO_prediction[i],width=0.2,color=color[i],align='center'\ , edgecolor='black', hatch=hatch[i],linewidth=1) ax1.errorbar(x+x_offset[i], CNCO_prediction[i], yerr=np.stack((CNCO_95L[i],CNCO_95U[i]),axis=0), xerr=None\ , fmt='none', ecolor='k',elinewidth=2,capsize=4) ax1.set_xlim([0.5,CNCO_prediction[0].size+0.5]) plt.xlabel('Site-type') plt.ylabel('CO site distribution') ax1.set_xticks(range(1,len(x)+1)) ax1.set_xticklabels(['Atop','Bridge','3-fold','4-fold']) ax1.text(0.004,0.93,'(b)', transform=ax1.transAxes) x = np.arange(1,GCN_prediction[0].size+1) ax2 = plt.subplot(G[1,1]) for i in range(NUM_SURFACES): ax2.bar(x+x_offset[i], GCN_prediction[i],width=0.2,color=color[i],align='center'\ , edgecolor='black', hatch=hatch[i],linewidth=1) ax2.errorbar(x+x_offset[i], GCN_prediction[i], yerr=np.stack((GCN_95L[i],GCN_95U[i]),axis=0), xerr=None\ , fmt='none', ecolor='k',elinewidth=1,capsize=2) ax2.set_xlim([0.5,GCN_prediction[0].size+0.5]) plt.xlabel('Generalized Coordination Group') plt.yticks([]) ax2.set_xticks(range(1,len(x)+1)) ax2.text(0.004,0.93,'(c)', transform=ax2.transAxes) plt.gcf().subplots_adjust(bottom=0.09,top=0.98,right=0.98,left=0.06) plt.show() .. image:: /auto_examples/predict_experiment/images/sphx_glr_plot_predict_experiment_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none C:\Users\lansf\Box Sync\Synced_Files\Coding\Python\Github\jl_spectra_2_structure\examples\predict_experiment\plot_predict_experiment.py:109: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. plt.show() PLot all predictions for binding-types and GCN grups with large error --------------------------------------------------------------------- .. code-block:: default G = gridspec.GridSpec(1, 2) CNCO_c4x2 = np.array(NN_CNCO.PREDICTIONS_LIST)[:,0,:] GCN_p1x2 = np.array(NN_GCN.PREDICTIONS_LIST)[:,2,:] plt.figure(1,figsize=(7.2,2)) ax1 = plt.subplot(G[0]) ax1.hist(CNCO_c4x2[:,0],bins=10,align='mid',rwidth=0.8,color='brown',zorder=1) ax1.hist(CNCO_c4x2[:,1],bins=10,align='mid',rwidth=0.8,color='black',zorder=2) ax1.legend(['Pt(111) c(4x2) Atop','Pt(111) c(4x2) Bridge']) ax1.text(0.004,0.93,'(a)', transform=ax1.transAxes) plt.xlabel('CO binding-type distribution') plt.ylabel('Number of predictions') ax2 = plt.subplot(G[1]) ax2.hist(GCN_p1x2[:,7],bins=10,align='mid',rwidth=0.8,color='brown',zorder=1) ax2.hist(GCN_p1x2[:,9],bins=10,align='mid',rwidth=0.8,color='black',zorder=2) ax2.legend(['Pt(110) Group 8','Pt(110) Group 10']) ax2.text(0.004,0.93,'(b)', transform=ax2.transAxes) plt.xlabel('CO GCN group distribution') plt.yticks([]) plt.show() .. image:: /auto_examples/predict_experiment/images/sphx_glr_plot_predict_experiment_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none C:\Users\lansf\Box Sync\Synced_Files\Coding\Python\Github\jl_spectra_2_structure\examples\predict_experiment\plot_predict_experiment.py:134: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 5 minutes 17.028 seconds) .. _sphx_glr_download_auto_examples_predict_experiment_plot_predict_experiment.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: plot_predict_experiment.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_predict_experiment.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_