.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_wasserstein_loss_plot_wasserstein.py: ================================================================== Wasserstein loss and its derivative used in jl_spectra_2_structure ================================================================== This example shows how to deconvolute spectra using the model The parity plot for the mixtures where concentrations are known is shown in figure 1 and the plot of concentration with time for the experimental spectra from reacting systems are shown in figure 2 and 3 for different starting concentrations .. code-block:: default import numpy as np from scipy.special import kl_div import matplotlib.pyplot as plt from matplotlib import gridspec from jl_spectra_2_structure.plotting_tools import set_figure_settings set figure settings ------------------- First we'll set up vectors to store the wasserstein loss of A1, A2, and A3, with respect to B. The kl-divergence loss does not change with these threee vectors. Second we'll set up the vectors to store the derivative of the loss with respect to the non-zero indices. .. code-block:: default set_figure_settings('presentation') a = np.linspace(0,1,num=100,endpoint=True) B = [0,0,0,1] Wl = np.zeros_like(a) Wl2 = np.zeros_like(a) Wl3 = np.zeros_like(a) KL = np.zeros_like(a) dEdO1 = np.zeros_like(a) dEdO2 = np.zeros_like(a) dEdO3 = np.zeros_like(a) dEdO14 = np.zeros_like(a) dEdO24 = np.zeros_like(a) dEdO34 = np.zeros_like(a) dKLdOi = np.zeros_like(a) for i in range(len(a)): A = np.array([a[i],0,0,1-a[i]]) Akl = [a[i]+10**-12,+10**-12,+10**-12,1-a[i]+10**-12] Bkl = [10**-12,10**-12,10**-12,1+10**-12] KL[i] = np.sum(kl_div(Bkl,Akl)) dKLdOi[i] = a[i] W = (1/len(A)*np.sum((np.cumsum(A)-np.cumsum(B))**2))**0.5 dEdO = 2*A*(np.cumsum((np.cumsum(A)-np.cumsum(B))[::-1])[::-1]-np.sum(np.cumsum(A)*(np.cumsum(A)-np.cumsum(B)))) dEdO1[i] = dEdO[0] dEdO14[i] = dEdO[3] Wl[i]= W A = np.array([0,a[i],0,1-a[i]]) W = (1/len(A)*np.sum((np.cumsum(A)-np.cumsum(B))**2))**0.5 dEdO = 2*A*(np.cumsum((np.cumsum(A)-np.cumsum(B))[::-1])[::-1]-np.sum(np.cumsum(A)*(np.cumsum(A)-np.cumsum(B)))) dEdO2[i] = dEdO[1] dEdO24[i] = dEdO[3] Wl2[i]= W A = np.array([0,0,a[i],1-a[i]]) W = (1/len(A)*np.sum((np.cumsum(A)-np.cumsum(B))**2))**0.5 dEdO = 2*A*(np.cumsum((np.cumsum(A)-np.cumsum(B))[::-1])[::-1]-np.sum(np.cumsum(A)*(np.cumsum(A)-np.cumsum(B)))) dEdO3[i] = dEdO[2] dEdO34[i] = dEdO[3] Wl3[i]= W KL/= np.max(KL) G = gridspec.GridSpec(2, 1) plt.figure(0,figsize=(7,7.6)) ax1 = plt.subplot(G[0,0]) ax1.plot(a,Wl,'g',a,Wl2,'b',a,Wl3,'darkorange',a,KL,'k') plt.xticks([]) plt.ylabel('Loss') plt.legend(['[a,0,0,1-a]','[0,a,0,1-a]','[0,0,a,1-a]','kl-div']) ax2 = plt.subplot(G[1,0]) ax2.plot(a,dEdO1,'g--') ax2.plot(a,dEdO2,'b--') ax2.plot(a,dEdO3,'darkorange',linestyle='--') ax2.plot(a,dKLdOi,'k--') ax2.plot(a,dEdO14,'g:') ax2.plot(a,dEdO24,'b:') ax2.plot(a,dEdO34,'darkorange',linestyle=':') ax2.plot(a,-dKLdOi,'k:') plt.xlabel('a') plt.ylabel('Derivative wrt\n nonzero elements') plt.legend(['[a,0,0,1-a]','[0,a,0,1-a]','[0,0,a,1-a]','kl-div']) plt.show() .. image:: /auto_examples/wasserstein_loss/images/sphx_glr_plot_wasserstein_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none C:\Users\lansf\Box Sync\Synced_Files\Coding\Python\Github\jl_spectra_2_structure\examples\wasserstein_loss\plot_wasserstein.py:86: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.219 seconds) .. _sphx_glr_download_auto_examples_wasserstein_loss_plot_wasserstein.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: plot_wasserstein.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_wasserstein.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_